2º Bachillerato Ciencia: Matemáticas II

Wiris nuevo

 Vídeo explicativo: Qué hacer con los siguientes applets de GeoGebra

SABERES BÁSICOS I ANÁLISIS

1. Límites, continuidad y asíntotas

1.1. Cálculo gráfico y numérico del límite de una función en x = a

2.1. Cálculo del límite de una función en el infinito

2.2. Límites infinitos en el infinito

2.3. Comparación de infinitos

3.2. Límites de funciones polinómicas cuando x → ±∞

3.3.a. Límites de funciones racionales: xa

3.3.b. Límites de funciones racionales: x → ±∞

3.4.Límites de diferencia de infinitos con funciones polinómicas y racionales
4.1.a. Límites de funciones irracionales: Cuando x tiende a un extremo finito del dominio

4.1.b. Límites de funciones irracionales: Cuando x → ±∞

4.1.c. Límites de funciones irracionales: Diferencia de infinitos cuando x → ±∞

4.1.d. Límites de funciones irracionales: Indeterminación [0/0] cuando xa

4.2.a. Límites de funciones potenciales-exponenciales cuando x → ±∞

4.2.b. Límites de funciones potenciales-exponenciales cuando xa

5.1. Continuidad en un punto

5.2.a.1. Discontinuidades: Discontinuidad evitable. Falta el punto

5.2.a.2. Discontinuidades: Discontinuidad evitable. Punto desplazado

5.2.b. Discontinuidades: Discontinuidad de 1ª especie o de salto

5.2.c. Discontinuidades: Discontinuidad de 2ª especie

6.1. Continuidad en un intervalo cerrado

6.2. Propiedades de la continuidad

6.3. Teorema de los valores intermedios de Darboux

6.4. Teorema de Bolzano

6.5. Teorema de Weierstrass

7.2. Cálculo de asíntotas de funciones racionales

7.3. Cálculo general de las asíntotas oblicuas

Funciones elementales que hay que conocer

 

2. Cálculo de derivadas

1.1. Tasa de variación media

1.2. Derivada de una función en un punto

1.3.a. Interpretación gráfica de la derivada

1.3.b. Interpretación gráfica de la derivada: Recta tangente y normal a una curva en un punto

2.1. Función derivada

2.2. Derivadas laterales

2.3.a. Continuidad y derivabilidad

2.3.b. Continuidad y derivabilidad: Función continua y no derivable

3. Reglas de derivación. Tabla de derivadas: Máquina de calcular derivadas

3.1. Regla de la cadena

3.2. Derivada de funciones implícitas

3.3. Derivada de funciones potenciales-exponenciales

4.1. Cálculo de la función derivada en funciones definidas a trozos

4.3. Estudio de la derivada en funciones definidas a trozos

4.4. Estudio de la derivabilidad en funciones con parámetros

4.5. Estudio de la derivabilidad en funciones con valor absoluto

 

3. Aplicaciones de las derivadas

 

1.1. Máximos y mínimos relativos. Monotonía

2.1. Concavidad, convexidad y puntos de inflexión

2.3. Determinación general de los puntos singulares

3.1. Teorema de Rolle

3.2. Teorema del Valor Medio o de Lagrange

4.1. La regla de L’Hôpital

5.1.a. Problemas de optimización

5.1.b. Problemas de optimización: Perímetros, longitudes y áreas de polígonos y círculos

5.1.c. Problemas de optimización: Áreas y volúmenes de cuerpos geométricos

6.1. Rectas tangente y normal a una curva en un punto

6.2. Aplicaciones del teorema de Weierstrass
6.3. Aplicaciones del teorema de Bolzano
6.4. Cálculo de una función con condiciones

 

4. Análisis de funciones y representación de curvas

1.1. Análisis sobre la gráfica de una función

2.1.a. Análisis de funciones polinómicas

 

2.1.b. Investigación. Estudio cualitativo de las funciones polinómicas

3.1.a. Análisis de funciones racionales

 

3.1.b. Investigación. Estudio cualitativo de funciones racionales

4.1. Análisis de funciones irracionales

5.1. Análisis de funciones exponenciales

6.1. Análisis de funciones logarítmicas

7.1. Análisis de funciones trigonométricas

 

5. Integrales. Métodos de integración

1.1. Tabla de integrales inmediatas (Máquina de calcular integrales)

1.2.a. Primitiva e integral de una función

1.2.b. Primitiva e integral de una función. Cálculo de k

1.3. Regla de la constante

2.2. Integración por partes en un paso

3.1. Integración de funciones racionales con raíces simples en el denominador

4.1. Integración de funciones racionales con raíces dobles o complejas en el denominador.

5.1. Cambio de variable en funciones logarítmicas y exponenciales

5.3. Integrales trigonométricas

5.5. Integración de funciones definidas a trozos o por partes

 

6. Integral definida

1.1. Integral definida de Riemann

1.2. Procedimiento para aplicar la regla de Barrow

1.3. Propiedades de la integral definida

1.4. Derivada de una integral

2.1. Área comprendida entre el eje X y la función f(x) en el intervalo de integración [a, b]

2.2. Área comprendida entre dos funciones f y g

2.3. Área comprendida entre el eje X y una curva f(x)

3.1. Aplicaciones a la Física

3.2. Aplicaciones al Medioambiente

3.3. Aplicaciones a la Economía

4.2. Volumen de un cuerpo de revolución

 

SABERES BÁSICOS II ÁLGEBRA

7. Sistemas lineales

1.1. Clasificación de los sistemas

2.1. Estudio o discusión de los sistemas 3×3

3.1. Sistemas lineales de 2 ecuaciones con 2 incógnitas: 2×2: Interpretación gráfica

3.2. Sistemas lineales de 3 ecuaciones con 3 incógnitas: 3×3: Interpretación gráfica

4.1.a. Procedimiento de resolución de problemas, sistemas 2×2

4.1.b. Procedimiento de resolución de problemas, sistemas 3×3

 

8. Matrices

1.1.a. Definición de matriz. Tipos de matrices según su forma

1.1.b. Definición de matriz. Tipos de matrices según sus elementos

1.2. Matriz traspuesta

2.1. Suma de matrices

2.2. Resta de matrices

2.3.a. Producto de un número k por una matriz A

2.3.b. Producto de un número k por una matriz A. Operaciones lineales con matrices

2.4. Producto de matrices

2.5. No conmutatividad del producto de matrices

3.1. Potencia de matrices

3.2. Matrices cíclicas

3.3. Potencias por recurrencia

4.2. Representación matricial de un sistema

 

9. Determinantes

1.1. Determinante de una matriz 2×2 y 3×3

1.4. Casos en los que el determinante es cero

2.1. Cambiar dos líneas paralelas

2.3. Determinante de la matriz traspuesta

2.4. Descomponer en una suma y multiplicar por k

2.5. Determinante del producto de dos matrices

3.5. Cálculo práctico de la matriz inversa

3.6. Existencia de la matriz inversa

4.3. Resolución de ecuaciones con determinantes

5.1. Cálculo del rango por Gauss

5.3. Cálculo del rango de una matriz 3×3

5.4. Vectores linealmente dependientes o independiente.

5.5. Discusión del rango en función de un parámetro

10. Sistemas lineales con parámetros

1.3. Discutir o estudiar un sistema

2.1. Regla de Cramer

2.2. Resolución de un sistema matricialmente

3.1. Sistemas de 3 ecuaciones con 3 incógnitas con un parámetro k

3.2. Sistemas de 3 ecuaciones con 2 incógnitas con un parámetro k

 

SABERES BÁSICOS III GEOMETRÍA

11. Vectores en el espacio

1.1. Vectores

1.2. Sistema de referencia. Coordenadas de un vector

1.3. Cálculo del módulo de un vector y vector unitario

1.4. Suma y resta de vectores

1.5. Producto de un número k por un vector v
2.1. Vector de posición

2.2. Coordenadas de un vector definido por dos puntos

2.3. Punto medio de un segmento

2.4. Baricentro de un triángulo

2.5. Centro de gravedad de un tetraedro

2.6. Determinación de puntos en el espacio

2.7. Combinación lineal de vectores
3.1. Producto escalar

3.2. Interpretación geométrica del producto escalar

3.3. Ángulo de dos vectores

3.5. Determinación de un vector perpendicular u ortogonal a otro

4.1. Producto vectorial

4.2. Interpretación geométrica del producto vectorial

5.1. Producto mixto

5.2.a. Interpretación geométrica del producto mixto

5.2.b. Investigación: Volumen de cada paralelepípedo = 6 tetraedros

 

12. Espacio afín

1.2. Ecuaciones de la recta

1.3. Ecuación de la recta que pasa por dos puntos A y B

2.2. Ecuaciones del plano

2.3. Ecuación del plano conociendo un punto P y el vector normal n

2.4. Plano determinado por 3 puntos A, B, C

3.1. Posición relativa de 2 rectas en el espacio

3.2. Posición relativa de una recta y un plano en el espacio

4.1. Posición relativa de 2 planos

4.2. Posición relativa de 3 planos

Ejes de coordenadas

Rectas paralelas a los ejes de coordenadas

Planos coordenados

Planos paralelos a los planos coordenados

 

13. Espacio métrico

1.1. Distancia entre dos puntos

1.2. Distancia de un punto a una recta

1.3. Distancia entre dos rectas que se cruzan

1.5. Plano mediador

2.1. Distancia de un punto a un plano

2.2. Distancia de una recta a un plano

2.3. Distancia entre dos planos

2.4. Plano bisector

3.1. Ángulo formado por dos rectas

3.2. Ángulo formado por una recta y un plano

3.3. Ángulo formado por dos planos

4.1. Rectas perpendiculares

4.2. Recta y plano perpendiculares

4.3. Planos perpendiculares

4.4. Recta que corta perpendicularmente a otras dos que se cruzan

5.1. Simetría respecto de un punto

5.2. Simetría respecto de una recta

5.3. Simetría respecto de un plano

 

SABERES BÁSICOS IV PROBABILIDAD

14. Probabilidad

1.2. Operaciones con sucesos

2.2. Regla de Laplace

2.3. Propiedades de la probabilidad

2.5. Diagrama en árbol

4.2.a. Teoremas de la probabilidad: Bayes 2x2

4.2.b. Teoremas de la probabilidad: Bayes 3x2

 

15. Distribución binomial y normal

1.4.a. Cálculo de la probabilidad en una distribución binomial B(n, p) (GeoGebra)

1.4.b. Cálculo de la probabilidad en una distribución binomial B(n, p) (Excel)

1.4.c. Cálculo de la probabilidad en una distribución binomial B(n,p) (Calc)

2.3.a. Cálculo de la probabilidad en una distribución normal estándar N(0, 1) (GeoGebra)

2.3.b. Cálculo de la probabilidad en una distribución normal estándar Tabla de la N(0, 1)

2.3.c. Cálculo de la probabilidad en una distribución normal estándar N(0, 1) (Excel)

2.3.d. Cálculo de la probabilidad en una distribución normal estándar N(0, 1) (Calc)

2.4.a. Tipificación de la variable N(μ, σ). (GeoGebra)

2.4.b. Cálculo de la probabilidad en una distribución normal estándar N(m, s) (Excel)

2.4.c. Cálculo de la probabilidad en una distribución normal estándar N(m, s)  (Calc)

3.3. Aproximación de la binomial por la normal: Normalización y tipificación (GeoGebra)

 

AMPLIACIÓN

Análisis

Integración de funciones racionales

El denominador tiene solo una raíz real múltiple

Integración por cambio de variable por cambio de variable
Cambio de variable en funciones irracionales de igual índice

 

Álgebra

Rango de una matriz

Rango de una matriz

Cálculo de la matriz inversa

Cálculo de la matriz inversa

 

Geometría

Ecuación de la esfera
Esfera de centro C(a, b, c) y radio R

Esfera de centro O(0, 0, 0) y radio R

Ecuación general de la esfera

Posiciones relativas
Posición relativa de una recta y una esfera

Posición relativa de un plano y una esfera

Posición relativa de un plano y una esfera: Cuádricas

 

ANEXO 3

Tabla de la normal N (0, 1)
Tabla N(0, 1)